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Abstract The recently developed essentially fourth-order or higher low dissipative

shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu-

merical dissipations for high speed compressible viscous 
ows containing shocks, shears

and turbulence. To detect non smooth behavior and control the amount of numerical

dissipation to be added, Yee et al. employed an arti�cial compression method (ACM)

of Harten (1978) but utilize it in an entirely di�erent context than Harten originally

intended. The ACM sensor consists of two tuning parameters and is highly physical

problem dependent. To minimize the tuning of parameters and physical problem depen-

dence, new sensors with improved detection properties are proposed. The new sensors

are derived from utilizing appropriate non-orthogonal wavelet basis functions and they

can be used to completely switch o� the extra numerical dissipation outside shock lay-

ers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can

be maintained without compromising its stability at all parts of the domain where the

solution is smooth. Two types of redundant non-orthogonal wavelet basis functions

are considered. One is the B-spline wavelet (Mallat & Zhong 1992 ) used by Gerritsen

and Olsson (1996) in an adaptive mesh re�nement method, to determine regions where

re�nement should be done. The other is the modi�cation of the multiresolution method

of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The

wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a cho-

sen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both

wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic

numerical dissipation control and improved grid adaptation indicators. Consequently,

they are useful not only for shock-turbulence computations but also for computational

aeroacoustics and numerical combustion. In addition, these sensors are scheme inde-

pendent and can be stand alone options for numerical algorithm other than the Yee et

al. scheme.

1 Introduction

E�cient and accurate numerical simulation of 
uid 
ows containing both sharp layers

and turbulence are computationally very challenging. Resolving a wide range of length

scales, including shock layers, and high shear mixings is time consuming and costly.

Numerical methods of the total variation diminishing (TVD) type for shock capturing

are too dissipative to be useful when turbulence is present. Higher order di�erence
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2Department of Numerical Analysis and Computer Sciences, KTH, 100 44 Stockholm, Sweden.
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methods in conjunction with scalar or characteristics type nonlinear numerical dissipa-

tions, without appropriate adaptive sensor control, behave similarly. Accurate methods

such as spectral, spectral elements and high order spectral-like compact schemes for

computing turbulence, break down when shocks are present. Although CPU inten-

sive high order essentially non-oscillatory (ENO), weighted ENO (WENO) and discrete

Galerkin schemes, generally exhibit less numerical dissipation than TVD schemes, nev-

ertheless, their built in numerical dissipation still prevents the accurate capturing of �ne

scale turbulent structures without resorting to very �ne grids. On the other hand, the

switching mechanisms for multi-dimensional complex 
ow structures in hybrid schemes

(e.g., switch between spectral element and ENO schemes) are extremely complicated

and frequent activations of the ENO schemes are expected. As a remedy for this situa-

tion, the arti�cial compression method (ACM) based �lter scheme was proposed in

Yee et al. [24]. In this method one time step consists of one step with a fourth-order or

higher accurate non-dissipative spatial base scheme. Often an entropy split form of the

inviscid 
ux derivative (Yee et al. [25] and Gerritsen & Olsson [3] ) is used along with a

post processing step, where regions of oscillation are detected and �ltered by adding the

numerical dissipation portion of a shock capturing scheme at these parts of the solution.

The entropy splitting of the inviscid 
ux derivative is considered as a conditioned form

of the governing equations. The idea of the scheme is to have the spatially fourth-order

or higher non-dissipative scheme activated at all times and to add the full strength,

e�cient and accurate numerical dissipation only at the shock layers. Thus, it is nec-

essary to have good detectors which 
ag the layers, and not the oscillatory turbulent

parts of the 
ow �eld. It was shown in Yee et al. [24, 25, 26] that the ACM sensor,

while minimizing the use of numerical dissipation away from discontinuities, consists

of tuning parameters and is physical problem dependent. The objective of the present

work is to develop adaptive numerical dissipation sensors that are improvements over

the ACM sensor.

Wavelets were originally developed for feature extraction in image processing and for

data compression. It is well known that the regularity of a function can be determined

from its wavelet coe�cients [1, 13, 8] far better than from its Fourier coe�cients. By

computing wavelet coe�cients (of a suitable set of wavelet basis functions), we obtain

very precise information about the regularity of the function in question. This infor-

mation is obtained just by analyzing a given grid function. No information about the

particular problem which is solved is used. Thus, wavelet detectors are general, problem

independent, and rest on a solid mathematical foundation.

As of the 1990's, wavelets have been a new class of basis functions that are �nding use

in analyzing and interpreting turbulence data from experiments. They also are used for

analyzing the structure of turbulence from numerical data obtained from DNS or large

eddy simulation (LES). See Farge [2] and her later work, and Perrier et al. [15]. There

are several ways to introduce wavelets. One standard way is through the continuous

wavelet transform and another is through multiresolution analysis, hereafter, referred to

as wavelet based multiresolution analysis. Mallet and collaborators [8, 9, 10, 11, 12, 13]

established important wavelet theory through multiresolution analysis. See references

[20, 21] for an introduction to the concept of multiresolution analysis. Recently, wavelet

2



based multiresolution analysis has been used for grid adaptation (Gerritsen & Olsson

[3] ) and to replace existing basis functions in constructing more accurate �nite element

methods. Here we utilize wavelet based multiresolution analysis to adaptively control

the amount of numerical dissipation that is inherent in standard high-resolution shock-

capturing schemes. With a proper choice of a set of the wavelet basis functions, we

have a better control on the proper distribution of numerical dissipations leading to

a more accurate simulation than the ACM sensor. The resulting wavelet sensors are

readily available as more desirable grid adaptation indicators than those commonly

used. It is well known that numerical dissipation is the main cause of wrong speed

of propagation of discontinuous data in numerical combustion (LeVeque & Yee [7])

unless an order of magnitude adaptive grid re�nement and time step reduction are

used. Numerical dissipation is also a major stumbling block in e�cient and accurate

simulation of aeroacoustic problems. Consequently, the proposed wavelet based adaptive

numerical dissipation control and grid adaptation indicator can be valuable to numerical

combustions and computational aeroacoustics. In addition, this dual purpose adaptive

method is scheme independent and can be a stand alone option for a variety of schemes

other than what is discussed here.

Section 2 reviews the Yee et al. [24] high order scheme employing ACM as a nu-

merical dissipation sensor. Section 3 derives two multiresolution wavelet numerical

dissipation sensors accompanied with scalar examples. Section 4 discusses the options

in applying the wavelet sensor for highly coupled nonlinear systems of conservation

laws. Numerical experiments for 2-D compressible Euler and Navier-Stokes equations

are given in Section 5.

2 High Order ACM Based Filter Scheme

In vector notation the 2-D compressible time-dependent Euler equations in conservation

form for a perfect gas can be written, in Cartesian coordinates, as

Ut + Fx +Gy = 0; (2.1)

where Ut =
@U
@t
, Fx =

@F
@x

and Gy =
@G
@y

and the U , F , G, are vectors given by

U = (�; �u; �v; e)T ;

F = (�u; �u2 + p; �uv; eu + pu)
T
; G = (�v; �uv; �v2 + p; ev + pv)

T
:

(2.2)

The dependent variable U is the vector of conservative variables, and (�; u; v; p)T is the

vector of primitive variables. Here � is the density, u and v are the velocity components,

�u and �v are the x- and y-components of the momentum per unit volume, p is the

pressure, e = �["+(u2+ v2)=2] is the total energy per unit volume, and " is the speci�c

internal energy. For constant speci�c heats (calorically perfect gas) " = cvT , where cv
is the speci�c heat at constant volume.

The eigenvalues associated with the 
ux Jacobian matrices of F andG are (u; u; u�c)
and (v; v; v � c), where c is the sound speed. The two u; u and v; v characteristics are
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linearly degenerate. Hereafter, we refer to the �elds associated with the u� c and v� c
characteristics as the nonlinear �elds and the �elds associated with the u; u and v; v

characteristics as the linear �elds.

Spatial Discretizations: The spatial discretizations of the ACM based �lter scheme

of Yee et al. [24] consist of two parts, namely, a base scheme and a �lter. When

numerical dissipations or �lters are not used, the scheme consists of only the base

scheme. If entropy splitting (Yee et al. [25] and Gerritsen & Olsson [3]) is used, the base

scheme is applied to the split form of the inviscid 
ux derivatives. It is noted that the

entropy splitting form of the inviscid 
ux derivatives can be viewed as a more conditioned

form of the Euler equations for stability considerations. See Yee et al. [25, 26, 17] for

details. Possible non-dissipative high order base schemes for Fx and Gy and the viscous

terms (if present) are the standard fourth and sixth-order compact and non-

compact central schemes for the interior grid points.

The ACM Filter: For e�ciency and ease of numerical boundary treatment, Yee et

al. [24] proposed using �lter operators whose grid stencils have a width similar to that

of the base scheme. The �lter operator consists of the product of a sensor and a

nonlinear dissipation. Denote Fj;k as the discrete approximation of the inviscid 
ux

F at (j�x; k�y), where �x and �y are the grid spacings in the x- and y-directions and

j and k are the corresponding spatial indices. Let the �lter vector in the x-direction be

of the form

eF �
j+ 1

2
;k
=

1

2
Rj+ 1

2

��
j+ 1

2

: (2.3)

eF �
j+ 1

2
;k
is the modi�ed form of the nonlinear dissipation portion of the standard

numerical 
ux. For characteristic based methods, the quantity Rj+ 1

2

(with the k index

suppressed) is the right eigenvector matrix of @F
@U

using Roe's average state (Roe's ap-

proximate Riemann solver). eG�
j;k+ 1

2

is de�ned in the same manner. The elements of

��
j+ 1

2

(with the k index suppressed), denoted by (e�l
j+ 1

2

)�, are

(�l
j+ 1

2

)� = S l
j+ 1

2

e�l
j+ 1

2

: (2.4)

e�l
j+ 1

2

is the dissipative portion of the high resolution scheme resulting from using a

TVD, MUSCL with slope limiters, ENO or WENO scheme. Formulae for e�l
j+ 1

2

are

well known and can be found in the literature. See Yee et al. [24] for details and for

a discussion of other possible �lters. Here S l
j+ 1

2

is the sensor and is a mechanism for

controlling excess numerical dissipation that is inherent in the dissipative portion of

standard high-resolution shock-capturing schemes.

For the numerical experiments to be presented later, we use the Harten and Yee

upwind TVD numerical dissipation (Yee [22, 23])

e�l
j+ 1

2

=
1

2
e (al

j+ 1

2

)(glj+1 + glj)� e (alj+ 1

2

+ 
l
j+ 1

2

)e�l
j+ 1

2

; (2.5)
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l
j+ 1

2

=
1

2
e (al

j+ 1

2

)

8><
>:

(glj+1 � glj)=e�lj+ 1

2

e�l
j+ 1

2

6= 0

0 e�l
j+ 1

2

= 0
: (2.6)

The al
j+ 1

2

, l = 1; 2; 3; 4, are the characteristic speeds of @F
@U

evaluated at the Roe's

average state. The e�l
j+ 1

2

are elements of R�1
j+ 1

2

(Uj+1;k�Uj;k). The corresponding e�lj+ 1

2

,

e�l
j+ 1

2

and Rj+ 1

2

using the MUSCL formulation are instead functions of the left and right

states of U . The function e is an entropy correction to jal
j+ 1

2

j. One possible form is

Harten & Hyman [6].

The `limiter' function glj used for the numerical experiment can be chosen as one of

the following expressions

glj =

�e�l
j� 1

2

[(e�l
j+ 1

2

)
2
+ �2] + e�lj+ 1

2

[(e�l
j� 1

2

)
2
+ �2]

���
(e�l

j+ 1

2

)
2
+ (e�l

j� 1

2

)
2
+ 2�2

�
;

glj = minmod(2e�l
j� 1

2

; 2e�l
j+ 1

2

; 1
2
(e�l

j+ 1

2

+ e�l
j� 1

2

));

glj = S �max

�
0;min(2je�l

j+ 1

2

j; S � e�l
j� 1

2

);min(je�l
j+ 1

2

j; 2S � e�l
j� 1

2

)

�
:

(2.7)

Here �2 is a small dimensionless parameter to prevent division by zero and S = sign(e�l
j+ 1

2

).

The minmod function of a list of arguments is equal to the smallest number in absolute

value if the list of arguments is of the same sign, or is equal to zero if any arguments

are of opposite sign.

The ACM Sensor: An arti�cial compression method (ACM) originally proposed by

Harten [4] makes use of the gradient sensor to switch between a higher order scheme and

a �rst order scheme. Yee et al. [24] use this gradient sensor as part of S l
j+ 1

2

. In contrast

to hybrid schemes that switch between spectral or spectral-like non-shock-capturing

schemes and high order ENO schemes, the high order non-dissipative base scheme is

always activated. For the ACM sensor, S l
j+ 1

2

= ��l
j+ 1

2

. The parameter � is problem-

dependent. The function �l
j+ 1

2

is the Harten ACM gradient sensor. For a general 2m+1

point base scheme,

�l
j+ 1

2

= max (b�lj�m+1; :::;
b�lj+m); (2.8)

b�lj =
���� je�

l
j+ 1

2

j � je�l
j� 1

2

j
je�l

j+ 1

2

j+ je�l
j� 1

2

j

����
p

: (2.9)

Here the parameter p is an exponent � 1 and is not the \pressure p" in (2.1) and (2.2).

For smooth 
ows in the absence of high shears, � can be very small. It is used to

minimize spurious high frequency oscillation producing nonlinear instability associated

with pure central schemes, especially for long time integration problems. Di�erent
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physical problems require di�erent values of � because of the large variation in 
ow

properties. The � value may vary from one characteristic wave to another, and from

one region of the 
ow �eld to another region with di�erent 
ow structure. Instead of

varying � for the particular 
ow problem, one can vary p. For larger p, less numerical

dissipation is added. Note that by varying p � 1 in the ACM sensor, one can essentially

increase the order of accuracy of the �lter.

For a chosen grid spacing without grid adaptation, we would like to point out that

neither the ACM sensor nor the wavelet sensor (to be discussed next) would be able to

improve the accuracy at the shock and shear locations over the inherent shock-capturing

capability of the nonlinear dissipation. The accuracy of the shock and shear is dictated

by the chosen 
ux limiter of the nonlinear dissipation. The role of the sensors is to

allow the full amount of numerical dissipation in shock and shear regions, and to limit

the amount of numerical dissipation in regions immediately away from shock and shear

locations and the rest of the 
ow �eld. Therefore, with a suitable sensor and 
ux limiter,

one does not have to use CPU-intensive high order high-resolution shock-capturing

numerical dissipation. The dissipation with sensor and 
ux limiter generally gives a

slightly more accurate solution away from discontinuities but exhibits similar shock and

shear resolution as second or third-order high-resolution numerical dissipation.

Full Discretizations: If a multistage time discretization such as the Runge-Kutta

method is desired, the high order non-dissipative spatial di�erencing base scheme is

applied at every stage of the Runge-Kutta method. If viscous terms are present, they

use the same order and type of base scheme as for the inviscid terms. There are two

methods for applying the characteristic �lter. Method 1 is to apply the �lter at every

stage of the Runge-Kutta step. Method 2 is to apply the �lter at the end of the full

Runge-Kutta step. For inviscid and strong shock interactions, method 1 might be more

stable.

If one desires a time discretization that belongs to the class of linear multistep

methods (LMMs), e.g., trapezoidal rule or three-point backward di�erentiation, then

the �lter can be applied as a numerical dissipation vector in conjunction with the base

scheme. The �lter in this case is evaluated at Un for explicit LMMs. For implicit

LMMs additional similar �lters evaluated at the n + 1 time level might be involved.

Alternatively, method 2 can be applied to LMMs as well. In this case, we apply the

�lter after the completion of the implicit time step.

As an example, we illustrate the complete form of the schemes for Runge-Kutta

methods with the �lters applied at the completion of a full Runge-Kutta time step.

Let bUn+1 be the solution after one full Runge-Kutta time step using a non-dissipative

spatial base scheme. Then the solution at the next time level Un+1 is

Un+1
j;k

= bUn+1
j;k

+
�t

�x

� eF �
j+ 1

2
;k
� eF �

j� 1

2
;k

�
+

�t

�y

� eG�
j;k+ 1

2

� eG�
j;k� 1

2

�
: (2.10)

Here, the numerical �lters eF �
j� 1

2
;k
and eG�

j;k� 1

2

are evaluated at bUn+1.
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3 Wavelet Detection Algorithms

The ACM sensor function is not entirely satisfactory since tuning parameters � and p

are involved. We will develop here a wavelet based sensor function to replace ��l
j+ 1

2

,

which has the advantages of relying on a solid theoretical foundation, and minimizing

the number of problem dependent parameters. Below we �rst describe the method in

standard wavelet framework. Next we show how the Harten multiresolution method [5]

can be used as a starting point for the derivation of a detection algorithm, on the same

form. This modi�ed Harten multiresolution description has the advantage of being more

intuitive.

There exists today a large body of results on determining regularity of a function

from its wavelet representation. See for example [1], [12], [13]. The wavelet technique

has been especially useful in simulation of turbulence, where it can be used as a data

analyzing tool, extracting structures from the numerical solution, [2], [14, 15]. In [3]

a wavelet based multiresolution analysis from [13] is used to determine points where

mesh adaption should be done. We will, to some extent, follow the description in [3]

but rather utilize the wavelet technique for numerical dissipation control.

The wavelet decomposition of a function f(x) is obtained by taking the inner product

with wavelet functions  m;n(x). This leads to the wavelet coe�cients,

wm;j = hf;  m;ji =
R
f(x) m;j(x) dx;

m = : : : ;�1; 0; 1 : : : ; j = : : : ;�1; 0; 1; : : :
(3.1)

Here m is an index representing scale, and j is an index representing position. The

set of basis functions  m;j(x) is obtained by scalings of a single \mother wavelet" basis

function  (x) and is not to be confused with the e l
j+ 1

2

in (2.6). The construction of

 (x) depends on the types of application. Among the many rich mathematical wavelet

developments, one of the key elements of the present interest is the scaling of the mother

wavelet. The other is the mathematical characterization of multiresolution scales by the

so called Lipschitz exponents [1, 13, 12].

There exist two major scalings leading to orthogonal and non-orthogonal wavelets.

There also exist di�erent scaling factors giving rise to di�erent normalizations. The

scaling we will use is

 m;j(x) = 2�m ((x� j)=2m): (3.2)

With this scaling the resulting wavelets do not form an orthonormal basis, and this is

sometimes referred to as a redundant wavelet decomposition. In addition, the mother

wavelet  (x) should have compact support, or rapidly decrease towards in�nity, so that

the wavelet coe�cient wm;j contains information about how much of scale 2m is present

in f(x) at the point x = j. Additional technical conditions on  (x), for example that

its integral is equal to zero, should be imposed. Under these conditions it is possible to

compute f(x) from given coe�cients wm;j.

It is even possible to make the functions  m;j(x) an orthonormal basis for L2. In fact,

more known results and applications are based on orthonormal wavelet basis functions.
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In order to construct an orthonormal basis, the scaling of the wavelet function (3.2) is

replaced by

 m;j(x) = 2�m=2 (x=2m � j) (3.3)

so that the number of coe�cients on the coarser scale is not as densely distributed.

In practice, the scaling is restricted by the chosen grid size in numerical computations

and consequently, cannot be very small. If m corresponds to grid levels, this scaling

(3.3) would restrict us to fewer coe�cients on the coarser grids, which is not unnatural.

For our case, however, since we will estimate the regularity of a function at all grid

points using several levels of wavelet coe�cients, we keep all level of coe�cients at all

grid points. We can then estimate the regularity of the function f(x) with the same

accuracy at all grid points. With orthogonal wavelets we would have had a poorer

estimate in between the coarse grid points. For a redundant wavelet decomposition,

the scaling (3.2) is more natural and meets our requirement. Thus we will not use

orthogonal wavelets.

We are here mainly interested in computing the wavelet coe�cients (3.1) and the

information which we can obtain from them. In the wavelet based multiresolution

analysis, there exist several theorems about the relation between the regularity of a

function f(x) and its wavelet coe�cients (3.1), see [1],[12],[2],[15],[8]. For example

Theorem 9.2.2 in [1], which states that if  is in C1 and has compact support, and if

the wavelet coe�cients satisfy

max
j2S(x0;m;�)

j hf;  m;ji j � C2m� (3.4)

for all m smaller than some limit, and for some � > 0, and some �, 0 < � < 1, then the

function f has Lipschitz exponent � at x = x0,

jf(x)� f(x0)j � Cjx� x0j� (3.5)

for all x in a neighborhood of x0. S(x0;m; �) is the extended domain of dependence of

the wavelet function,

S(x0;m; �) = fj :  m;j(x) 6= 0 for some x 2 (x0 � �; x0 + �)g : (3.6)

The assumptions on f and  for similar results to hold vary between di�erent refer-

ences. Often it is required that f is in L2, bounded and continuous, and that  is

C1 and compactly supported. Furthermore, the number of vanishing moments of  (x)

determines an upper limit on �. For example, if the �rst two moments of  (x) vanish,

the result is valid for 0 < � < 2. A kth vanishing moment means that
R
xk (x) dx = 0.

The result in [13, 12], which is used in [3], instead gives the condition that  (x) should

be the k-derivative of a smooth function �(x) with the property

�(x) > 0;

Z
�(x) dx = 1; lim

x!�1
�(k)(x) = 0: (3.7)

Then the result is valid for 0 < � < k. A continuous function has a Lipschitz exponent

� > 0. A bounded discontinuity (shock) is � = 0, and a Dirac function (local oscillation)
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has � = �1. Large values of k can be used in turbulent 
ow so that large vortices or

vortex sheets can be detected. Although the theorem above does not hold for � negative,

a useful upper bound on � can be obtained from the wavelet coe�cient estimate. The

work [8, 12] are good references for more detailed results on regularity estimates from

wavelets. Before the discussion of the numerical computation of the wavelet coe�cients

we would like to emphasize that the Lipschitz exponent � in (3.4) and (3.5), which

measures the regularity of a function f(x), holds the key to our wavelet based adaptive

numerical dissipation control.

3.1 Numerical Computation of the Wavelet Coe�cients

For practical computations, we cannot make the scale 2m in�nitely small. The smallest

scale is given by the grid, which we normalize to m = 0. For the discrete case, the

index m denotes the grid level, and the index j is the grid point index of the wavelet

coe�cients. The grid points are x = j, j = 1; 2; : : : ; N . For increasing m the support of

 m;j(x) increases, which means that the scale becomes larger. For the present applica-

tion, the regularity of the function that we want to analyze consists of numerical data

obtained from numerically solving a system of nonlinear PDEs with a chosen numerical

scheme (e.g. (2.10)).

For a given grid function fj, j = 1; 2; : : : ; N that we want to analyze, we now

describe how to compute numerically the coe�cients wm;j for m = 1; 2; : : : ;m0 and j =

1; 2; : : : ; N . m0 is the coarsest scale that we want to use. Of course, we could evaluate

the coe�cients directly from the de�nition hf;  m;ji, by numerical quadrature. This

would be very expensive because the support of  m;j increases when m increases, and

the quadrature formulas would then involve sums where the number of terms approaches

N on the coarsest scales.

The basis of a computational scheme in obtaining the wavelet coe�cients is the

introduction of a so called scaling function �(x), which belongs to the class of smoothing

functions �(x) in (3.7) satisfying

�(x) = 2

qX
k=�p

dk�(2x� k)  (x) = 2

qX
k=�p

ck�(2x� k): (3.8)

Here, the scaling function �(x) has no association with the scaling of the mother wavelet

 (x) by 2m. Also, the scaling functions �(x) and �m;j(x) are not to be confused with the

nonlinear numerical dissipation e�l
j+ 1

2

in (2.4). Only a few dk and ck should be nonzero,

in order to obtain an e�cient computational method.

The functional equations (3.8) is closely associated with the multiresolution anal-

ysis [20, 21, 8]. In the multiresolution analysis, a sequence of closed subspaces Vj of

L2(R); j 2 Z of di�erent resolution is de�ned,

: : : � V2 � V1 � V0 � V�1 � V�2 : : :

with the important property that if a function h(x) 2 Vm, then h(2
mx) 2 V0, so that

all spaces are scaled versions of V0. Here R and Z are the spaces of reals and integers

9



respectively. Furthermore, we require that[
m2Z

Vm = L2(R) and
\
m2Z

Vm = f0g:

In other words,
S
m2ZVm is dense in L2(R). The spaces Vm can be thought of as

representing all scales down to the mth scale. We also require that V0 is invariant under

integer translations, so that a basis on the form f�(x � j)gj can be found. With the

de�nition �m;j = 2�m=2�(x=2m � j), we then obtain f�m;jgj as a basis for Vm. With

these de�nitions the scaling relation (3.8) for � just means that we expand the function,

e.g., �0;0 in the basis ��1;j, which can be done since V0 � V�1.

Let Wm be the orthogonal complement of Vm in Vm�1, so that

Vm�1 =Wm

M
Vm;

where the symbol
L

stands for direct sum. It can then be shown that a basis f m;j(x)g
for Wm can be found, where  m;j = 2�m=2 (x=2m� j). The spaces Wm are orthogonal,

since Wm � Vm�1, and Vm�1?Wm�1. We can write L2 as a direct sum of Wm spaces,

L2(R) =
M
m

Wm

so that the  m;j form an orthogonal basis for L2. This is an orthogonal wavelet basis

for L2. The scaling relation for  , can then be thought of as an expansion of  0;0 in the

basis ��1;j , which can be done since W0 � V�1.

If a scaling function �(x) satisfying (3.8) can be found, we obtain a fast method

for the evaluation of the wavelet coe�cients, independent of whether the formula was

derived from an orthogonal wavelet basis, or was found in any other way. The compu-

tational scheme becomes

hf; �m;ji =
Pq

k=�p dk


f; �m�1;j+2m�1k

�
hf;  m;ji =

Pq

k=�p ck


f; �m�1;j+2m�1k

� (3.9)

where we have de�ned �m;j(x) = 2�m�((x � j)=2m). To derive (3.9) from (3.8), insert

the argument (x� j)=2m in the place of x and multiply by 2�m to obtain

1

2m
�((x� j)=2m) =

1

2m�1

pX
k=�q

dk�(2
x� j

2m
� k) =

1

2m�1

pX
k=�q

dk�(
x� j � 2m�1k

2m�1
)

from which we can identify the relation

�m;j(x) =

pX
k=�q

dk�m�1;j+2m�1k(x):

Multiplying this equation by f(x) and integrating, gives (3.9) for �, the relation for

 follows from similar computations. If the coe�cients on the �nest grid hf; �0;ji are

10



given, we can compute hf;  1;ji, hf; �1;ji, by using the formulae (3.9). Repeating the

procedure gives hf;  m;ji for successively increasing m. The formulae (3.9) are a pair

of di�erence operators acting on a grid function fj . We can express the algorithm as

follows. Introduce the grid operators

Afj =
Pq

k=�p dkfj+k

Dfj =
Pq

k=�p ckfj+k

(3.10)

and its mth level expanded versions

Amfj =
Pq

k=�p dkfj+2mk

Dmfj =
Pq

k=�p ckfj+2mk;
(3.11)

where the integers p and q are related to the chosen  (x) and �(x). The computation

(3.9) can then be written as

f
(m)
j = hf; �m;ji = Am�1f

(m�1)
j

wm;j = hf;  m;ji = Dm�1f
(m�1)
j :

(3.12)

Starting from the grid function f
(0)
j = hf; �0;ji, (3.12) is applied successively to obtain

grid functions form = 1; 2; 3; : : : ;m0. The initial f
(0)
j is found by numerical quadrature.

The computation f
(m)
j = Am�1f

(m�1)
j for a three point operator A is outlined in Fig. 3.1.

These sequences are sometimes referred to as the impulse response of low pass and

high pass �lters. The computation wm;j = Dm�1f
(m�1)
j follows a similar pattern, but

possibly with a di�erent stencil width.

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s
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@
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�
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H

H

H
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�

�
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Fig. 3.1. The computation of f
(m)
j (3.12), when A has three point stencil.

The mth level of wavelet coe�cients can be written as

wm;j = hf;  m;ji = Dm�1Am�2Am�3 : : : A0fj; m = 1; 2; : : : : (3.13)

Once the coe�cients dk and ck are determined the computation is a very standard

application of grid operators. In practice, we only use m0 = 3 to 5. To be able to
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compute up to the boundary, we use one sided versions of the given operators. This

seems to work well in practice, although it is not covered by the wavelet framework

described above. Study on the e�ect of wavelets on an interval using the appropriate

boundary wavelets [8] for our application is a subject of ongoing research.

To determine the initial coe�cients, hf; �0;ji from fj, we make a numerical approxi-

mation of the integral. If the support of �(x) is small, we can set hf; �0;ji � fj
R
�(x) dx.

3.2 Approximation of the Lipschitz Exponent

After we compute the wavelet coe�cients, the next step is to compute the Lipschitz

exponent �, the key for our present development. Unfortunately, it is not possible to

obtain � exactly. There exist in the literature di�erent methods for approximating �.

The method of approximating � in [3] is based on the theorems in [13], which involves

tracing a maximum curve among the wavelet coe�cients to points of singular behavior.

We choose here, instead, to base our method on Theorem 9.2.2 of [1] as described

previously. This means that we do not trace maximum lines. Instead the procedure

below is applied at all grid points. Note that the results in both [1] and [13] are valid

for functions of a continuous variable, so there is some freedom of interpretation when

applying them to functions de�ned only at grid points.

After we have computed the wavelet coe�cients, we �rst form the maximum over

the domain of dependence,

rm;j = max
k=�2mp;2mq

j hf;  m;j+ki j (3.14)

where the nonzero ck coe�cients are enumerated from �p to q. We estimate the Lips-

chitz exponent by a least squares �t of a line to the equation

log2 rm;j = �m+ c: (3.15)

The slope gives an estimate of � at the point x = j. A discontinuity is characterized

by � = 0. Standard numerical centered di�erence approximations have problems when

� is small. Usually existence of several derivatives is required for high order di�erence

formulas to be accurate.

3.3 Detectors from the B-Spline Wavelet Basis Function

Developing the best suited wavelets that can characterize all of the 
ow features might

involve the switching or blending of more than one mother wavelet  (x) and scaling

function �(x). The mother wavelet function used in [3] and described in detail in [13]

meets some of our requirements. It is obtained from second order B-splines.

 (x) =

8>>>>><
>>>>>:

0 x > 1

�2(x� 1)2 1=2 < x < 1

�4x(1� x) + 2x2 0 < x < 1=2

�4x(1 + x)� 2x2 �1=2 < x < 0

2(x+ 1)2 �1 < x < �1=2
0 x < �1

: (3.16)
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For this wavelet (3.16), there exists a scaling function, given by

�(x) =

8>>><
>>>:

0 x > 2
1
2
(x� 2)2 1 < x < 2

�(x� 1=2)2 + 3=4 0 < x < 1
1
2
(x+ 1)2 �1 < x < 0

0 x < �1

: (3.17)

If we apply the Fourier transform, ĥ(�) =
R
e�ix�h(x) dx, to the relation

�(x) = 2
X
k

dk�(2x � k)

we obtain

�̂(�) = b0(�=2)�(�=2) (3.18)

where b0(�) =
P

k dke
ik�. From a given trigonometric polynomial b0(�), we can �nd

scaling functions by iterating (3.18),

�̂(�) =

1Y
m=1

b0(�=2
m)�̂(0)

or conversely, for a given scaling function, we can try to �nd the polynomial b0(�) from

(3.18). Taking the ~N degree B-spline basis function as the scaling function gives

�̂(�) = e�is�=2(
sin �=2

�=2
)
~N+1;

where s is 1 for ~N even, and 0 for ~N odd. From this it is not hard to verify that

b0(�) = e�is�=2 cos
~N+1 �=2

and we get the coe�cients dk from this trigonometric polynomial.

The normalization is such that the integral of the scaling function above is equal to

one. The functions above are standard, and can be found in [1]. The scaling function

di�ers by a shift from the scaling function used in [3], but the important relations

�(x) = 1
4
�(2x + 1) + 3

4
�(2x) + 3

4
�(2x� 1) + 1

4
�(2x� 2)

 (x) = �(2x+ 1)� �(2x)
(3.19)

hold, and give the grid operators

Afj = (fj�1 + 3fj + 3fj+1 + fj+2)=8; j = 2; : : : ; N � 2

Dfj = (fj�1 � fj)=2 j = 2; : : : ; N:
(3.20)
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Fig. 3.2. Scaling function. Fig. 3.3. Wavelet function.

Here p = 1, q = 2, d�1 = 1=8, d0 = 3=8, d1 = 3=8, d2 = 1=8, c�1 = 1=2, c0 = 0,

c1 = 1=2, and c2 = 0 for (3.11). For example, for m0 = 3, the computation of f
(m)
j

involves a grid stencil of 13 points. Note that the wavelet stencil is not symmetric. In

general, formula (3.9) shows that points from p2m0�1 to �q2m0�1 are involved in the

computation, giving a stencil of totally (p + q)2m0�1 + 1 points. The scaling function

�(x) and the wavelet function  (x) for the B-spline wavelet are shown in Figs. 3.2 and

3.3 respectively.

For boundary operators we use

Df1 = (f3 � 3f2 + 2f1)=2

Af1 = (7f1 � 3f2 + 5f3 � f4)=8

AfN�1 = (7fN � 3fN�1 + 5fN�2 � fN�3)=8

AfN = (25fN � 37fN�1 + 27fN�2 � 7fN�3)=8:

(3.21)

The coe�cients are determined so that the action on smooth functions is close to the

interior operators. The simpler formulae

Df1 = (f1 � f2)=2

Af1 = (7f1 � 3f2 + 5f3 � f4)=8

AfN�1 = (fN + 3fN�1 + 3fN�2 + fN�3)=8

AfN = (7fN � 3fN�1 + 5fN�2 � fN�3)=8

(3.22)

have also turned out to work well in practice. We will later show some experiments

with these operators. The computation consists of the following steps. Use (3.20) with

(3.21) or (3.22) as the operators (3.10). Compute wm;n from (3.12), and estimate the

regularity by (3.14) and (3.15).
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3.4 Detectors from Converting Harten's Multiresolution Scheme to

Redundant Wavelets

This section describes a procedure to modify Harten's multiresolution method ([5])

into redundant non-orthogonal wavelets and derive an alternate wavelet detector which

in some sense is slightly simpler than the B-spline wavelet sensor. The multiresolution

method by Harten is a way to speed up computations by using a wavelet decomposition.

See Sj�ogreen [19] for a study of Harten's multiresolution scheme. We next give a brief

description of the method.

Consider the approximation of a PDE in one space dimension, on the uniform grid

xj = j�x, j = 0; 1; : : : ; N . The numerical solution is given by (f0; f1; : : : ; fN ), with fj
an approximation of the solution at xj . Introduce L levels of successively coarser grids,

Gk = (x0; x2k ; : : : ; xN ) k = 0; : : : ; L:

Let xkj denote grid point j on grid Gk. Then x
0
j = j�x, and xkj = x0

j2k
= j2k�x. Let

Nk denote the number of points in Gk. Then Nk = 2L�kNL. We let fkj denote the

numerical solution of a PDE at the point xkj .

Assume that the solution is given on grid Gk, and that we want to �nd it on the

�ner grid Gk�1. For the even numbered grid points we have

fk�12j = fkj ; j = 0; 1; : : : ; Nk:

To �nd the solution at the odd grid points, we let I(x; fk) interpolate fkj on Gk, such

that I(xkj ; f
k) = fkj . We then have the approximation f̂k�12j�1 = I(xk�12j�1; f

k) of fk�12j�1.

The interpolation error is dkj = fk�12j�1� f̂k�12j�1. Thus with knowledge of fk and dk we can

reconstruct the solution on Gk�1. We call (fk; dk) the multiresolution representation

of fk�1. Note that the vectors fk; dk together contain the same number of elements as

does fk�1. In summary, we switch between the representation fk�1, and (dk; fk) by the

forward transformation

fkj := fk�12j

dkj := fk�12j�1 � I(xk�12j�1; f
k)

(3.23)

and the backward transformation

fk�12j := fkj

fk�12j�1 := dkj + I(xk�12j�1; f
k):

This is inexpensive if I(xk�12j�1; f
k) is a straightforward linear interpolation operator.

We transform consecutively on all grids

f0 ! (d1; f1)! (d1; d2; f2)! : : : (d1; d2; : : : ; dL; fL):

The vectors (d1; d2; : : : ; dL; fL) are the multiresolution representation of f0. The inter-

polation errors dk contain information about the smoothness of the solution. If dkj is

large at some grid points, this indicates that the solution is non-smooth there.
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The multiresolution method does not increase the number of coe�cients, and is

therefore not redundant. We here propose instead to use a redundant form, obtained

from computing coe�cients dkj at all points on the �ne grid. To do this, we treat the

�ne grid as consisting of two coarse grids. The even points are interpolated from the

odd points, and vice versa. The interpolation errors are used for wavelet coe�cients.

The following formula then replace (3.23),

fk2j := I(xk�12j ; fk�12j�1)

fk2j�1 := I(xk�12j�1; f
k�1
2j )

dkj := fk�1j � fkj :

By expressing the wavelet coe�cients as interpolation errors, it becomes intuitively clear

why they should be small when the function is regular.

We express the computation of the level k coe�cients from the level k�1 coe�cients

in operator form as

fkj = Afk�1j

dkj = fk�1j �Afk�1j

where Afj is an averaging operator, coming from the interpolation formula. We assume

that the same I(x; f) is used for the odd and the even points. The computation is done

for all j on the �ne grid. At the boundary points, we use one sided versions of the

operator A. Note that (3.23) is exactly the same form as (3.12), if we de�ne D = I�A,
with dkj as wm;j , and f

k
j as f

(m)
j in (3.12).

There is more than one choice for the interpolation function. See Sj�ogreen (1995)

for a discussion. The exact form of the method for the computations in this article will

be

Afj = (fj�1 + fj+1)=2 j = 2; : : : ; N � 1

Dfj = fj �Afj j = 2; : : : ; N � 1:
(3.24)

The above choice was made in order to have a simple and e�cient method. The stencil

is narrower than for the B-spline formulas that were given previously. With the formula

above, we also get a symmetric stencil, which is more natural if the other parts of

the computation, such as di�erence approximations of PDEs are done by symmetric

formulas. Furthermore, symmetry makes periodic boundary conditions somewhat easier

to implement. Note that the absence of symmetry for either the scaling function or the

wavelet can lead to phase distortion. This can be shown to be important to signal

processing applications.

We now have a method in the same form as the wavelet detector from the previous

subsection, but derived in an intuitive way and using a more narrow grid stencil. For

example, for m0 = 3, the computation of f
(m)
j involves a grid stencil of 9 instead of

13. Using the above formula, we proceed with the Lipschitz exponent computations as

before.
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3.5 Two Space Dimensions

Wavelet functions can be de�ned in di�erent ways in two dimensions. One way is to

use the product basis functions,

 m;n;j;k(x) =  m;j(x) n;k(x)

giving two scales m and n at each point (j; k) at the plane. It is possible to instead use

 m;j;k(x) =
1

2m
 ((x� j)=2m; (y � k)=2m)

where only one scale is present at each grid point.  (x; y) is a two dimensional version

of  (x).

The computation of multi-dimensional wavelets is quite expensive, especially in 3-

D. A simple minded e�cient way is to evaluate the wavelet coe�cients dimension by

dimension. This means that we get two set of wavelet coe�cients wx
m;j;k and w

y

m;j;k,

where now (j; k) is the position and m is the scale. The precise de�nition is

wx
m;j;k =

R
f(x; k) m;j(x) dx

w
y

m;j;k =
R
f(j; y) m;k(y) dy:

For simplicity in notation, here f(x; k) means the function \f" to be sensed in the x-

direction with a �xed k grid index in y. Later, our numerical method will have some

terms evaluated as �nite di�erences in the x-direction and some which are evaluated

in the y-direction. We then use the wx
m;j;k coe�cients for the x-direction computation,

and the y-coe�cients for the y-direction computation.

3.6 Numerical Experiments with 1-D Test Cases

We here test the detector algorithms on one dimensional examples, where the regularity

of the functions is known. We will compare the redundant wavelet of Harten's mul-

tiresolution method (3.24), referred to as RH-wavelet, and the B-spline wavelet (3.20)

referred to as BS-wavelet. A typical example from the wavelet literature is the function

given in Fig. 3.3. This function has a steep layer, a jump (� = 0), a sharp peak which

on the grids used is underresolved and could be understood as a Dirac pulse. A smooth

bump is also present. It has the form

f(x) =

8>>>>>>>>><
>>>>>>>>>:

0 x < �1
1=(e�15(x+3=4) + 1) �1 � x < �1=2
1 �1=2 < x < 1=2

0 1=2 < x < 1:9

1� 20jx� 1:95j 1:9 < x < 2

0 2 < x < 3

e�15(x�7=2)
2

3 < x < 4

0 x > 4

(3.25)

A good detector should 
ag the discontinuity, and the possible spike.
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Figure 3.4 shows results from using the ACM sensor ��l
j+ 1

2

in (2.8) and (2.9) with

p = 1 on the function in Fig. 3.3. We here de�ne e�l
j+ 1

2

as fj+1 � fj. The cases � = 1

and � = 0:5 are shown. Note that � is more relevant if it is a function of the dependent

variables, and/or when more than one wave is involved as in systems of hyperbolic PDEs.

Here � is just a scaling parameter. The value 1 (0:5) corresponds to non smoothness,

and the value 0 corresponds to a smooth linear solution. The function was evaluated at

300 grid points. We observe that the detector is unable to distinguish a corner (� = 1

for the wavelet detectors) from a discontinuity (� = 0 for the wavelet detectors) since

the ACM sensor is a single scale detector. Furthermore, the smooth maximum also

triggers the detector. Figure 3.4 indicates that numerical dissipation with the indicated

amount will be used for all of these nonzero regions.
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Fig. 3.3. Function used for testing.
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Fig. 3.4. ACM sensor, � = 1 (left) and � = 0:5 (right).

Next, the BS-wavelet operators (3.20) are used to compute four levels of wavelet

coe�cients for the function given in Fig. 3.3, evaluated at 300 grid points. A least

squares �t to the line (3.15) is done. The resulting local regularity exponent � is

plotted in Fig. 3.5. If some wavelet coe�cients are equal to zero, � is set equal to one,
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since this corresponds to maximum regularity and one is the highest � this particular

wavelet is able to predict. The initial coe�cients hf; �0;ni were evaluated by numerical

quadrature from function values at the grid points. In this computation � is equal to

0:13 at the jump, and �0:46 at the spike, and is close to or above one for the rest of

the function.

Figure 3.6 shows the same computation, but with the RH-wavelet decomposition

using operators (3.24) instead. The same function as above is decomposed into four

levels of coe�cients, and a least squares �t is done to �nd �. The predictions are of

similar type as for the BS-wavelet, but give a somewhat lower value of �. The RH-

wavelet gives the � value of 0:0 for the discontinuity, and -0.65 for the spike. Here we

made a numerical quadrature formula for the initial coe�cients, hf; �0;ni = (fj+fj+1)=2.

This was necessary to do in order to have an exactly correct result for step functions.

In [13], [3] scaling factors, which change with the scale level, are used on the wavelet

coe�cients in order to renormalize for step functions.

Readers are cautioned not to compare Fig. 3.4 with Figs. 3.5 and 3.6 in a straight

sense. The ACM sensor ��l
j+ 1

2

has no one-to-one correspondence with the Lipschitz

exponent �, even in the actual implementation of the wavelet sensor in the numerical

scheme. Figure 3.4 shows the amount of numerical dissipation needed for the Yee et al.

scheme to capture a solution like (3.25), whereas Figs. 3.5 and 3.6 show the regularity

of (3.25). The amount of numerical dissipation determined by the wavelet sensors does

not come into play until later. In a loose sense, Figs. 3.4 - 3.6 illustrate the fact

that the ACM sensor is a single scale detector as opposed to the chosen multiple scale

multiresolution wavelet sensors which are capable of detecting all of the four features of

the function (3.25).
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Fig. 3.5. BS- wavelet � estimate. Fig. 3.6. RH-wavelet � estimate.

As a second example, we investigate the capability of the detectors to predict the

exponent of the function jxj�, where 0 < � < 1. The H�older (Lipschitz) exponent �

obtained from the BS-wavelet decomposition (3.20) with four wavelet levels is shown in

Fig. 3.7 as a function of the exact exponent � where 300 grid points were used. The

same quantity computed by the RH-wavelet decomposition (3.24) is shown in Fig. 3.8.
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In the �gures the exact exponent is also plotted as a line with slope one. We note that

the prediction is fairly good in the interval 0:5 < � < 1, but that the computations tend

to overestimate the regularity at the lower end of the interval. This is probably due to

poor resolution of the singularity.
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Fig. 3.7. BS-wavelet estimate. Fig. 3.8. RH-wavelet estimate.

3.7 Experiments with orthogonal wavelets

To contrast the behavior of the non-orthogonal wavelets, we perform numerical experi-

ments with an orthogonal wavelet. We derive a computational procedure for computing

orthogonal wavelet coe�cients from a relation

�(x) =
p
2

qX
k=�p

hk�(2x� k) (3.26)

and make the scaling �m;j(x) = 2�m=2�(2�mx� j). It is possible to show that a similar

formula holds for the wavelet function,

 (x) =
p
2

qX
k=�p

gk�(2x� k);

with gk = (�1)kh�k+1. The wavelet basis functions are then de�ned as  m;j(x) =

2�m=2 (2�mx�j). The formulae for the coe�cients hf; �m;ji and hf;  m;ji now become

hf; �m;ji =
Pq

k=�p dk hf; �m�1;j+ki
hf;  m;ji =

Pq

k=�p ck hf; �m�1;j+ki
(3.27)

instead of (3.9). These coe�cients can be thought of as existing on a dyadic grid, with

grid points 2mj on scale m. The grid for orthogonal wavelet computation is outlined in

Fig. 3.9. Examples of orthogonal wavelets are given in ([1]). We have here chosen to

implement the so called Daubechies wavelets, D( ~N), ( see p. 194 in [1] ). These wavelets
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have compact support and are orthogonal. The ~Nth wavelet of the family has a support

of length 2 ~N � 1. The computations shown below have been done with ~N = 3.

s s s s s s s s s

s s s s s

s s s

- j
m = 0

m = 1

m = 2

Fig. 3.9. Dyadic grid .

Table 3.1. Coe�cients for orthogonal wavelet D(3).

k hk

0 0.3326705529500825

1 0.8068915093110924

2 0.4598775021184914

3 -0.1350110200102546

4 -0.0854412738820267

5 0.0352262918857095
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Fig. 3.10. Scaling function. Fig. 3.11. Wavelet function.

The coe�cients hk for this wavelet is given in Table 3.1, where the limits in the

summation in (3.26) are p = 0 and q = 5. The scaling function and the wavelet function

are shown in Fig. 3.10 and Fig. 3.11 respectively.

We can now compute just as before, but on the dyadic grid in Fig. 3.9, instead of a

standard grid. We compute the wavelet coe�cients by the formula (3.27). To estimate
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the regularity at a point j, we form the maximum over the wavelets coe�cients,

rm;j = max
k

j hf;  m;ki j

where k ranges over the values for which the support of  m;k(x) contains j. Here

fewer coe�cients than in the non-orthogonal case are, in general, used since they are

distributed more coarsely on the dyadic grid. Once the quantities rm;j are found we

proceed as previously, remembering that the di�erent scaling in the orthogonal case

makes the wavelet coe�cients decrease as 2(�+1=2)m with scale for a function with

regularity exponent of �. In the non-orthogonal case the behavior was 2�m. Figure

3.12 shows the result from the above procedure applied on the testing function (3.25).
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Fig. 3.12. � estimate from orthogonal wavelet D(3).

While the orthogonal wavelet is able to detect all four features of f , it gives a entirely

di�erent � values, especially, the shock and the Dirac-like pulse. More experiments with

estimation of regularity can be found on pp. 301{304 in [1].

4 Wavelet Detectors in the High Order ACMFilter Scheme

In the previous section we described how to estimate the regularity (Lipschitz) exponent

� numerically. However, we have not yet discussed how to use the information contained

in the Lipschitz exponent. One possibility would be to let the order of accuracy of the

numerical scheme adapt to the regularity of the function. Other possibilities are either

to use an approximation adapted to the regularity of the solution similar to the (h,p)

�nite element methods, or to integrate the wavelet sensor into a di�erence scheme, by

using the Lipschitz exponent � in the same way as the switching quantity used in the

high resolution shock-capturing schemes. These are subjects of ongoing investigations.

In this paper, we discuss how to use the Lipschitz exponent to dynamically control the

numerical dissipation. We concentrate on the simplest method of improving the Yee

et al. ACM based �lter scheme. The straightforward procedure is to insert the new

estimator into the ACM based �lter scheme to replace the ACM sensor. This boils down

to how to adaptively switch on or gradually transition to the numerical dissipation e�l
j+ 1

2

in (2.4).
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For the numerical experiments presented in Section 5, the wavelet sensor is obtained

by computing a vector of the approximated Lipschitz exponent of a chosen vector

function to be sensed with a suitable multiresolution non-orthogonal wavelet basis

function. Here, \vectors or variables to be sensed" means the represented vectors or

variables that are suitable for the extraction of the desired 
ow physics. The variables to

be sensed can be the density and/or pressure, the characteristic variables, the jumps in

the characteristic variables e�l
j+ 1

2

, or the entropy variable vector W (Gerritsen & Olsson

[3], Yee et al. [25]). The choice on the type of wavelet basis functions and their scaling

functions depends on the types of feature that we want to extract or detect. For the

test problems to be presented, we would like the wavelet basis function and its scaling

function to be capable of detecting shocks, shears, spurious oscillations and turbulence.

The BS and RH wavelets are two possible choices. Study on the optimal choice of

wavelet basis functions and their scaling functions is a subject of ongoing research.

For the wavelet sensor, the sensor S l
j+1=2

in (2.4) can be de�ned as

S lj+1=2 = �(�lj+1=2) (4.1)

where �l
j+1=2

is the estimated Lipschitz exponent of the lth characteristic component

with l = 1; 2; 3; 4, the four characteristic waves. �(�) is a sensing function which de-

creases from �(0) = 1 to �(1) = 0. Note that the lth component of the estimated

Lipschitz exponent �l
j+ 1

2

is not to be confused with the jump in the lth characteristic

variables e�l
j+ 1

2

in Section 2.

If we instead base the exponent estimate on point centered quantities, we will use

the sensor function

S lj+1=2 = max(�(�lj); �(�
l
j+1)) (4.2)

and if the exponent estimate is based on other quantities than the characteristic, e.g.,

density and pressure, we use the switch

Sj+1=2 = max
l
S lj+1=2 (4.3)

where the maximum is taken over all components of the waves used in the estimate,

and which thus is the same for all characteristic �elds.

The function �(�) should be such that �(0) = 1, and �(1) = 0 or a smooth transition

between 1 and 0. Three options are considered.

�(�) =

�
1 � < �0
0 � � �0

�(�) = 1
2
+ 1

�
arctanK(�0 � �)

�(�) = maxf0;min[1; (� � 1)=(�0 � 1)]g:

(4.4)

Here, �0 is a cut o� exponent to be chosen, and K is a constant, which we have tried

with values in the interval [200; 500]. Alternatively, one can integrate the actual � value

into the sensor function instead of using the same amount of numerical dissipation at

the cut o� exponent, especially to be used as grid adaption sensor as well.
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After some experimentation, we have found that switching on the dissipation at the

grid points where � < 0:5 works well, i.e., taking

�(�) =

8<
: 1 � < 0:5

0 � � 0:5
: (4.5)

In fact the method does not seem to be very sensitive to the exact value of cut o�

�0, (for 0:4 � �0 � 0:6) for all the test cases considered. Furthermore, the same cut

o� value, 0:5, works well for all problems we have tried in Section 5 (except for the

vortex convection case, where �0 = 0:0 to be used in conjunction with entropy splitting

[25]). Experiments with smoothed step functions do not give very di�erent results. To

distinguish the high order ACM based �lter scheme, we referred the scheme discussed

in Section 2 using the wavelet sensor (4.1)-(4.2) as the wavelet based �lter scheme.

We would like to point out that the simple minded wavelet sensor (4.4) or (4.5) does

not make full use of the Lipschitz exponent. Regardless of the amount of information

on the Lipschitz exponent used to design the wavelet sensor, the sensor is not really

parameter free. Unlike the ACM sensor, the parameter involved in the wavelet sensor

is, however, not arbitrary. There are theorems and guidelines on what values of the

Lipschitz exponent to be expected for various features of the function to be sensed.

5 Numerical Experiments for 2-D Compressible Euler and

Navier-Stokes Equations

To illustrate the performance of the wavelet sensor, the same three perfect gas test cases

with distinct 
ow properties as in Yee et al. [24, 25] are used. The �rst is inviscid and

the last two are compressible full Navier-Stokes computations. The three test cases are:

(1) a 2-D inviscid horizontally convecting vortex with periodic boundary conditions

(BCs), (2) a 2-D vortex pairing in a time-developing mixing layer with shock waves

formed around the vortices, and (3) a 2-D shock wave impinging on a spatially evolving

mixing layer where the evolving vortices must pass through a shock wave, which in turn

is deformed by the vortex passage. Figures 5.1{5.3 show the schematic, 
ow conditions

and the computational domains of the three test cases.
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Fig. 5.1. Test problem 1, isentropic vortex convection.

Fig. 5.2. Test problem 2, vortex pairing.
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Fig. 5.3. Test problem 3, shock impingement on a mixing layer.

In order to compare results with Yee et al. [24, 25], we use the same time and spatial

base scheme as Yee et al. The classical fourth-order Runge-Kutta time discretization,

and the non-compact central spatial schemes with the same order of accuracy and type

of base scheme for the inviscid and viscous terms (if viscosities are present) are employed.

The �lters are applied at the end of the full Runge-Kutta time step. Roe's [16] average

states are used in (2.3), along with the Harten and Yee ([22, 23]) second-order upwind

TVD dissipation portion (2.5)-(2.7) for e�l
j+ 1

2

in (2.4). From numerical experiment,

limiter (2.7a) produces the best result for test case 1 and limiter (2.7c) for test cases

2 and 3. Results shown in Section 5.2 re
ect these choices. For the ACM sensor the

parameters p and m in (2.8) and (2.9) are set to 1 and a small value of 10�6 is added to

the denominator of (2.9) to avoid an extra logical statement for the ACM sensor. For

the wavelet sensor, the cut o� Lipschitz exponent �0 is 0:5 for test cases 2 and 3 and

0:0 for test case 1. The reason for using �0 = 0:0 for test case 1 is that there are no

shock waves present. The sensor is used merely to suppressed high frequency producing

nonlinear instability associated with the central base scheme in this long time wave

propagation phenomena. These various numerical methods will be notated as ACM

or WAV (depending on whether an ACM or wavelet is used as the sensor) with the

following numbers indicating the order of the spatial interior base scheme for the inviscid

and viscous terms. For example, ACM66 (WAV66) means the use of sixth-order central

as the base scheme for both the inviscid and viscous terms, and ACM as sensor (wavelet

as sensor). These wavelet sensors are computed using the dimension by dimension

method as discussed in Section 3.5. In order not to introduce additional notation,

inviscid 
ow simulations are designated by the same notation, with the viscous terms
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not activated. Computations using the B-spline and the redundant form of Harten's

multiresolutionmethod will be notated as \BS" and \RH" as inWAV66-BS andWAV66-

RH. Computations using entropy splitting are indicated by adding the letters ENT as

in ACM66-ENT, WAV66-ENT-BS or WAV66-ENT-RH. Computation using S l
j+ 1

2

= 1,

i.e., the sensor is turned o� and the full amount from the upwind TVD dissipation

portion is used as the �lter, will be notated by TVD as in TVD66. The �fth-order

WENO scheme of Shu [18] will be notated as WENO5.

For the second and third test cases, we lower the order of the base scheme near

the boundary points for the boundary scheme. For example, for the sixth-order base

scheme, we use a fourth-order central scheme two points away from the boundary point

and second-order central scheme one point away from the boundary point. For the third

test case, for simplicity, slip wall boundary condition (BC) is used for the lower wall,

and the upper y-direction physical BC is overspeci�ed and nonre
ecting BC is not used.

A uniform Cartesian grid of 80 � 79 is used for test case 1. For test cases 2 and 3, a

uniform Cartesian grid is used in the x-direction and a mildly stretched Cartesian grid

is used in the y-direction with the grid size of 101� 101 and 321 � 81 respectively.

5.1 Comparison of the Wavelet Sensor with the ACM Sensor

Before showing the comparison of the high order wavelet based �lter scheme with the

high order ACM based �lter scheme, we �rst show the performance of the wavelet sensor

using the dimension-by-dimension approach for a 2-D complex 
ow structure and then

compare loosely with the ACM sensor. The initial illustration does not involve the

numerical scheme and only the performance of the wavelet sensor is demonstrated.

Figure 5.4 shows the computed density and pressure contours at t = 120 by WAV66-

RH with �t = 0:12 for test case 3. Here we only consider these numerical data as a

given two-dimensional discrete function to be analyzed by the wavelet algorithm. The

function represents a shock from the upper left corner, impinging on a horizontal shear

layer in the middle of the domain (See Fig. 5.3). The shock is re
ected from the lower

wall boundary. For more details about the problem, see Yee et al. [24, 25].
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Fig. 5.4. 2-D Testing discrete function,

(density and pressure contours at t = 120 from test case 3).

Figure 5.5 shows contours of the estimated Lipschitz exponent � for the function in

Fig. 5.4. The value � was computed here from three levels (m0 = 3) of the wavelet

algorithm, using the wavelet coe�cient

wm;j;k =
q
(wx

m;j;k
)2 + (w

y

m;j;k
)2

where the one dimensional coe�cients were computed by the multiresolution operators

(3.24) in each coordinate direction. The coe�cients were computed for the pressure.

The top �gure in Fig. 5.5 shows � contours on levels from 0:5 to 0:9. The lower �gure

shows the corresponding sensor, a function which is one for � < 0:5 and zero otherwise.

The wavelet sensor clearly captures the shock and the shear layer. The low � at the

upper boundary to the right is probably due to mildly unstable boundary conditions at

the upper boundary.
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Fig. 5.5. Top: � contours 0:5 � � � 0:9; Bottom: sensor contour at � = 0:5. by the RH-wavelet.

We want to emphasize that Fig. 5.5 shows the sensor when applied to a precomputed

solution at a �xed time. No dynamic behavior was involved (i.e., the numerical scheme

is not part of the analysis). Since the ACM sensor has no one-to-one correspondence

counterparts of Fig. 5.5, no results are shown for the ACM sensor. Next we show in

Figs. 5.6 and 5.7 results from actually computing the 
ow using the respective wavelet

based (WAV66-RH) and ACM based (ACM66) �lter schemes for �t = 0:12. Figure 5.6

shows the wavelet sensor applied to the density and pressure at t = 120 in the x and

y-directions, and the square root of the sum of these quantities in the x and y-directions.
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Fig. 5.6. One contour at � = 0:5 of the sensors used by WAV66-RH

applied to the density and pressure of test case 3.

Figure 5.7 shows the corresponding contours using the ACM sensor with � = 0:35. There

is only one contour level plotted. The level value is in the middle of the range, i.e., at the

average of the maximum and the minimum sensor values. The wavelet sensor was able to

extract the full features of the 
ow structure far better than the ACM sensor. Although

this is the case, as we can see later, the wavelet sensor exhibits accuracy similar to the

best tuned ACM sensor. This is due partly to the fact that in actual implementation

formulas (4.4) - (4.5) are used. We are not making full use of the Lipschitz exponent.
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Fig. 5.7. One contour of the sensor, S l
j+ 1

2

used by ACM66

applied to the density and pressure of test case 3.

Again one cannot compare the ACM sensor and the wavelet sensor directly on these

�gures. The wavelet has more 
exibility and choices whereas the ACM sensor only

compares the strength of gradients (m = p = 1 in (2.8) and (2.9)) between neighboring

grid points of a chosen physical quantity (or vector). Perhaps the comparisons would

be more relevant if we were to compare the ACM sensor using di�erent p and m values

in (2.8) and (2.9) for the di�erent 
ow features. This involves additional switching

parameters and is not pursued here.
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5.2 Comparison Among TVD66, WENO5, ACM66, and WAV66

Sample computations using the high order wavelet based �lter scheme WAV66 compared

with the high order ACM based �lter scheme ACM66 for test cases 1-3 are shown in

Figures 5.8{5.11. The accuracy of the two wavelet sensors, B-spline wavelet (WAV66-

BS) or the redundant form of Harten wavelet (WAV66-RH) for test cases 1-3 (results

not shown) is very similar and the e�ect on accuracy of the choice of the physical vector

(density and/or pressure, characteristic variables, e�l
j+ 1

2

, or entropy variables W ) to be

sensed is not pronounced. In all cases, no physical problem-dependent parameter has to

be tuned. The accuracy compared very well with that of the corresponding best tuned �

for ACM66 for the individual test cases 1-3. In particular, similar accuracy was sustained

using the redundant form of Harten wavelet sensor and entropy splitting (WAV66-ENT-

RH) for long time integrations of the vortex convection problems as ACM66-ENT using

� = 0:01 and �t = 0:01.

Figure 5.8 shows the comparison among TVD66 (S l
j+ 1

2

= 1), WENO5, ACM66,

and WAV66-RH for test case 3, illustrating the normalized temperature and pressure

contours at t = 113:16 with � = 0:35 for the nonlinear �elds and � = 0:175 for the

linear �elds for the ACM66. For this set of tuned �'s, the solution obtained is very

accurate and without visible instability. The solution is comparable with the WAV66-

RH. For test cases 2 and 3, only 50% of the wavelet sensor is applied to the linear �elds

(i.e., 50% numerical dissipation). The resolution of the WAV66-RH is more di�usive

if full strength is applied to the linear �elds. Observe that the wavelet sensor was

able to remove the noise generated on the upper boundary due to the overspeci�ed

BC. Note that the normalized temperature is the most sensitive value to examine for

accuracy of the schemes. By examining temperature contours, we note that the vortices

are more di�usive in the WENO5 computations. There is a minor di�erence in the two

simulations. The WENO5 code has a built-in nonre
ecting BC on the upper y-direction.

The WENO5 also requires more operations count than the ACM66 or WAV66.

The long time wave propagation of the inviscid vortex convection problem simi-

lar to test case 1 poses a di�erent challenge to the numerical method. For long time

wave propagation of this nature, non-dissipative or low dissipative schemes usually ex-

hibit high frequency oscillation nonlinear instability at quite early stages of the wave

propagation process. Although numerical dissipation can suppress the high frequency

oscillation, if applied incorrectly, the vortex becomes very di�use at a longer time in-

tegration and eventually nonlinear instability sets in. Figures 5.9 and 5.10 show the

long time wave propagation comparison between ACM66-ENT and WAV66-ENT-RH

for test case 1. Figure 5.9 shows the density pro�les at the centerlines y = 0 and at

x = 5, cutting through the center of the initial vortex, at 20 spatial period increments.

The time required for one spatial period is T = 10.

32



0 50 100 150 200
−20

0

20

x

y

TVD66

0 50 100 150 200
−20

0

20

x

y

WENO5

0 50 100 150 200
−20

0

20

x

y

ACM66

0 50 100 150 200
−20

0

20

x

y

WAV66−BS

0 50 100 150 200
−20

0

20

x

y

WAV66−RH

Fig. 5.8a. Normalized temperature contours for test case 3 at t = 113:16

using TVD66, WENO5, ACM66, WAV66-BS and WAV66-RH.
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Fig. 5.9a. Density at the line y = 0 at T = 20 increment for test case 1, ACM66-ENT.
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Fig. 5.9b. Density at the line x = 5 at T = 20 increment for test case 1, ACM66-ENT.
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Fig. 5.9c. Density at the line y = 0 at T = 20 increment for test case 1, WAV66-ENT-RH.
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Fig. 5.9d. Density at the line x = 5 at T = 20 increment for test case 1, WAV66-ENT-RH.

The time step and grid spacing are �t = 0:01 and 80 � 79. Depending on the time

and spatial discretizations, the grid size and time step, the vortex, after long time

integrations, can drift away from the centerline. The amount of drift depends on the

scheme, the grid size and the time step. For the various methods that we studied in

[25], the amount of drift can be very severe. For the present two methods with the

indicated time step and the uniform grid spacings, there is only a very slight drift of

the vortex after a very long time integration. If the computed vortex drifts away from

the centerline but still preserves the vortex shape and strength, the centerline density
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pro�les do not convey the full information and can be misleading. We complement

the comparison with snap shots of density contours at di�erent times up to 130 spatial

periods in Fig. 5.10.

Figure 5.10 shows the snap shots of the density contours at di�erent times. The

vortex is convected 10 spatial periods between each plot. The result from the WAV66-

ENT-RH method is at least as good as the ACM66-ENT method. Here the base scheme

is applied to the entropy split form of the inviscid 
ux derivative, in order to reduce

e�ects from non-linear instabilities. The results using the same condition and parame-

ters, but with no entropy splitting of the inviscid 
ux derivatives, although very stable,

exhibit smearing of the vortex and severe vertical and horizontal drifts for both ACM66

and WAV66-RH. See [25] for the ACM66 and ACM66-ENT comparison. The use of

entropy splitting in conjunction with ACM66 (ACM66-ENT) or WAV66-RH (WAV66-

ENT-RH) has preserved a horizontally convecting vortex with great accuracy after long

time integration of 130 (T = 1300) periods. The results use a uniform and not very �ne

grid. To the authors' knowledge, highly accurate numerical simulation of this problem

previously reported in the literature were only carried out up to 10 periods of integra-

tion.

We would like to point out that the vertical and horizontal drifting (or rather shift-

ing) of the vortex away from the centerline y = 0 and/or x = 5 is quite common for

all schemes beyond 30 periods. Depending on the scheme, the amount of numerical

dissipation and the time step, drifting can occur as early as 5 periods. We believe that

the drifting is due largely to the spatial numerical dissipation of the scheme provided a

highly accurate low phase error time integrator is used.

Figure 5.11 shows the comparison among TVD66, ACM66, WAV66-RH and WAV66-

BS for test case 2 with �t = 0:1. Here two di�erent versions of the WAV66-RH method

are examined. The one denoted WAV66-RH in the �gure has 50% reduced TVD dissi-

pation on the linear �elds. The resolution of WAV66-RH and WAV66-RHb is slightly

more accurate than WAV66-BS. The result using WENO5 (not shown) is less accurate

than ACM66 but more accurate than TVD66.
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Fig. 5.10a. Density contours for test case 1, ACM66-ENT.
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Fig. 5.10b. Density contours for test case 1, WAV66-ENT-RH.
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Fig. 5.11. Normalized temperature contours for test case 2

using TVD66, ACM66, WAV66-RH, WAV66-RHb, and WAV66-BS.
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6 Concluding Remarks

Improved adaptive numerical dissipation controls over the Yee et al ACM sensor have

been constructed. The new sensors with improved detection properties are derived from

multiresolution wavelet based analysis and require slightly more operations count than

the ACM sensor. There are a variety of wavelets to choose from, depending on the 
ow

feature.

We considered two types of non-orthogonal wavelet basis functions for our 2-D com-

pressible Euler and Navier-Stokes numerical experiments. One is similar to the B-spline

wavelet (Mallat & Zhong [13]) used by Gerritsen & Olsson [3] for grid adaptation and

the other is a modi�cation of the multiresolution method of Harten [5] as a redundant

multiresolution wavelet. The B-spline wavelet sensor requires slightly more arithmetic

operations and a wider grid stencil than the redundant form of Harten wavelet sensor.

The �nal form of the wavelet sensor S l
j+ 1

2

involves mainly nested di�erence operators

and least squares �ts. From the numerical experiments, it appears that the RH-wavelet

sensor exhibits a slightly more accurate result than the BS-wavelet sensor. The proposed

wavelet sensors, unlike the ACM sensor, can detect most of the distinct 
ow features,

including turbulence, leading to an automatic selection of the appropriate distribution

of numerical dissipation. Since distinct Lipschitz exponent values represent distinct


ow structures, these wavelet sensors are free of physical problem-dependent arbitrary

parameters for the three test cases presented. They are also good grid adaptation indi-

cators [3] when compared to the ones commonly used in practice. Consequently, a new

dual purpose adaptive method is readily available leading to dynamic numerical dissi-

pation controls and improved grid adaptation indicators. This dual purpose adaptive

method can also serve as a stand alone option for other numerical schemes.

In the future, we will explore the full capability of the multiresolution wavelet prop-

erty. This will include improved wavelet basis functions and their scaling functions for

high speed compressible shock-turbulence interaction and numerical combustion, and

an improved switching function other than the one proposed in Section 4. In other

words, a better use of the Lipschitz exponent information will be implemented. An-

other possibility is to use an approximation adapted to the regularity of the solution

similar to the (h,p) �nite element method. We will also consider integrating the wavelet

sensor into a numerical scheme, by using the Lipschitz exponent � in the same way as

the switching quantity is used in the high resolution shock-capturing schemes.
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